Biomechanical Formula Page:
\begin{array}{rclrcl}
v&=&\frac{\Delta\text{s}}{t}\qquad\qquad&v &=& r\omega\cr
sp &=& \frac{\Delta\text{d}}{t}\qquad\qquad&aR &=& \frac{v²}{r}\cr
a &=& \frac{\Delta\text{v}}{t}\qquad\qquad&T &=& F\bot\text{d}\cr
F &=& ma \qquad\qquad&P &=& \frac{F}{A}\cr
I &=& Ft\qquad\qquad&I &=& mr²\cr
W &=& Fd\qquad\qquad&I &=& mk²\cr
P &=& W/t\qquad\qquad& Ft &=& M2-M1\cr
M &=& mv\qquad\qquad&{D}_{vert} &=& \frac{({V}_{vert})²}{2g}\cr
I &=& \Delta\text{M} = mv-mu \qquad\qquad&{D}_{vert}&=&\frac{({V}_{sin\theta)²}}{2g}
v &=& u + at (u = vi) \qquad\qquad&{D}_{hor} &=& {V}_{hor}\times\text{ t}\cr
s &=& ut + ½at² (u = vi) \qquad\qquad&{D}_{hor} &=& \frac{(V^2Sin2\theta)}{g}\cr
v² &=& u² + 2as (u = vi) \qquad\qquad&Fr &=& \mu\text{R} (limiting)\cr
KE &=& ½mv² \qquad\qquad&Fs &=& \mu\text{sR} (sliding)\cr
PE &=& mgh \qquad\qquad&aT &=& (vf-vi)/t\cr
a² &=& b² + c² \qquad\qquad&l &=& r\theta\cr
\frac{a}{SinA} &=& \frac{b}{SinB} = \frac{c}{SinC} \qquad\qquad&w &=& mg\cr
\end{array}
\(a² = b² + c² -2bcCosA\)
\(\omega = \frac{\Delta\theta}{t}\)
\(\alpha=\Delta\omega\text{t}\)