The assessment you are taking is:-      AdvMech.
| Page 1 / 19 | Next

The expression $32^{\frac{2}{5}}$ can be written as

Back | Page 2 / 19 | Next

The expression $\frac{1}{27^{-\frac{1}{3}}}$ can be written as

Back | Page 3 / 19 | Next

The expression multiply $\frac{3}{7}a^x$ by $\frac{2}{5}a^y$ is equal to

Back | Page 4 / 19 | Next

The expression $\frac{x^4+y}{x^3+z}$ can be written as:

Back | Page 5 / 19 | Next

Making $x$ the subject in $\frac{3}{a} - \frac{2}{3x}= \frac{1}{c}$ results in:

Back | Page 6 / 19 | Next

The expression $x^{2}-x-6$ can be factorised as

Back | Page 7 / 19 | Next

The expression $5 x^{2}-20$ can be factorised as

Back | Page 8 / 19 | Next

If r satisfies the quadratic equation $r^{2}-30=r$ then the roots r are:

Back | Page 9 / 19 | Next

The solution of the simultaneous equations:

$5x+2y=10, 4x+3y=15$ is

Back | Page 10 / 19 | Next

The straight line with equation

$4y+3x-2=0$ cuts the y axis when

Back | Page 11 / 19 | Next

The gradient of the straight line passing through the points (-3,-4) and (2,-2) is

Back | Page 12 / 19 | Next

The slope of the curve $y=4x^{2}+6x-1$ at the point with $x=3$ is

Back | Page 13 / 19 | Next

If $y= \sin\left(3x^{3}-2 \right)$ then the derivative $\frac{dy}{dx}$ is:

Back | Page 14 / 19 | Next

If $y= e^{-2x}\sin \left(3x+1 \right)$ then the derivative $\frac{dy}{dx}$ is:

Back | Page 15 / 19 | Next

If $y= 6 \ln{x}-x^{-3}$ then the derivative $\frac{dy}{dx}$ is:

Back | Page 16 / 19 | Next

Find $\int \sin \left(5x\right)\,dx$

Back | Page 17 / 19 | Next

The logarithm function $\ln \frac{a}{b^3}$

Back | Page 18 / 19 | Next

For any value of $\theta$, $\sec^{2} \left( \theta \right) - \tan^{2} \left( \theta \right)$ is equivalent to

Back | Page 19 / 19 |

Which function has a graph which rises steeply to the right?

### UTS Staff and Students

MRS Welcome to the MRS...

Basic Skills Welcome to the Basic Skills Test...

Epidemiology Welcome to the Epidemiology...

Nursing Welcome to the Nursing...

Pharmacy Welcome to the Pharmacy...

Physics Welcome to the Physics...

SportScience Welcome to the Sport Science...